EFIR.COM.UA Перейти на главную стр.

Новости

Все об эфире
Статьи
Ссылки

История
Статьи
Ссылки

Гипотезы
Статьи
Ссылки

Теория
Статьи
Ссылки

Практика
Статьи
Ссылки

Устройства
Статьи
Ссылки

FAQ
Словарик

В начало
Назад






 
СОБСТВЕННЫЕ КОЛЕБАНИЯ ТОРОВИХРЕВОГО АТОМА


Торовихревая модель атома позволяет рассматривать явление избирательного поглощения (испускания) атомами газов некоторых частот видимого и невидимого света как резонанс; поэтому представляет интерес исследование собственных колебаний атомов.

Согласно альтернативной эфирной физике [1], атом представляет собой торовый вихрь в среде физического вакуума (эфира). Вихри крупных атомов скручиваются самым замысловатым образом, и их окончательный вид определяется уравновешенностью скручивающих и упругих сил. Но атом водорода, как самый наименьший, имеет вид кольца; сосредоточим свое внимание именно на нем, тем более что его спектр изучен досконально и отражен безупречными эмпирическими зависимостями. В альтернативной эфирной физике атом водорода представлен в виде тора, в сечении которого – бегающие по кругу друг за другом три элементарных эфирных шарика (ЭШ), а длина окружности тора составляет 1840 таких шариков. Таким образом, диаметр торового вихря атома водорода относится к диаметру его сечения как 586: 2,15.

Из механики известно, что собственные колебания упругого кольца выражаются в его изгибных колебаниях, когда по всей длине кольца формируется целое число равных по длине стационарных волн [2]. Колебаться могут также участки кольца, охватывающие несколько стационарных волн, то есть субволны; при этом узлы волн сохраняются неизменными. Выражение для определения частот основных форм изгибных колебаний упругого кольца имеет вид:



Воспользуемся этим выражением для определения основных частот изгибных колебаний торового вихря атома водорода. После позволительного упрощения его можно представить как



где – отражает напряженность (упругость) вихря; – длина окружности вихря; i – целое число стационарных волн, располагающихся по окружности вихря.

Приведем полученное выражение к виду:

, (1)


где , (2)

а – длина основной стационарной волны.

Выражение (1) известно в физике как эмпирическая формула Лаймана; она определяет спектральные частоты атома водорода в ультрафиолетовой области. Теперь можно объяснить – почему величина i не может быть меньше двух: при числе стационарных волн, равном единице, будет происходить не прогиб торового вихря, а смещение его в пространстве.

Для определения субчастот заменим длины основных волн l субдлинами (k l), где k – кратность (целое число). После раскрытия выражения (1) и подстановки в него субдлин получим
(3)


Выражение (3) ничем не отличается от известной обобщенной эмпирической формулы Бальмера, охватывающей видимую и инфракрасную области. В нем кратность k также всегда меньше числа основных стационарных волн i, так как при их равенстве опять же произойдет не прогиб, а смещение вихря.

Из вышеизложенного следует, что торовихревая модель атома действительно удобна для объяснения спектрального поглощения на основе резонанса. Кроме того, подтверждается положение альтернативной эфирной физики, согласно которому атомы газов пульсируют и создают вокруг себя пульсирующие поля, препятствующие их сближению. Торовый вихрь атома водорода, например, под воздействием противоборства скручивающих и упругих сил в условиях полного отсутствия трения (в эфире его нет) сжимается в овал попеременно то по одной оси, то по перпендикулярной к ней. Вывод о пульсации следует из выражения (2).

Экспериментально установлено, что число i может изменяться в несколько раз (i = 2…8). Это значит, что длина основной стационарной волны торового вихря атома водорода может изменяться во столько же раз. Известно также, что коэффициент Ридберга R является постоянной величиной. Этого достаточно, чтобы утверждать на основании выражения (2), что напряженность Н также изменяется и изменяется соответственно в 16 раз. (Следует уточнить, что это изменение зависит от температуры газа: чем она выше, тем больше амплитуда пульсации и тем шире диапазон напряженности.)

Зная, что R=3,29х1015 с–¹, можно установить связь между напряженностью Н и длиной волны l:

. (4)


В заключение попытаемся представить себе поведение атома водорода. В процессе пульсации его торовый вихрь испытывает хаотичные изгибные колебания, и только в определенные моменты, когда изменяющаяся по закону (4) стационарная волна становится такой, что на всей длине окружности тора она укладывается целое число раз, все эти волны начинают колебаться уже гармонически, упорядоченно. В эти моменты происходит поглощение ими в режиме резонанса набегающих поперечных волн среды с совпадающими частотами; так формируется спектр поглощения.

И в эти же моменты, на этих же частотах атом порождает убегающие волны света: при достижении стационарной волной порогового значения амплитуды с нее срывается фотон; уходя, он уносит с собой движения атома.

Параметры собственных колебаний атома водорода.

Номер ступени j Напряженность Hj , эш²/с Длина стационарной волны lj , эш Число волн ij Основная частота fj ,с–¹
1 1,74*10e20 230 8 3,24*10e15
2 2,27*10e20 263 7 3,22*10e15
3 3,09*10e20 307 6 3,20*10e15
4 4,46*10e20 368 5 3,16*10e15
5 6,96*10e20 460 4 3,08*10e15
6 12,38*10e20 613 3 2,92*10e15
7 27,85*10e20 920 2 2,47*10e15


countНовости'     Все об эфире.Статьи     Все об эфире.Ссылки     История.Статьи     История.Ссылки     Гипотезы.Статьи     Гипотезы.Ссылки     Теория.Статьи     Теория.Ссылки     Практика.Статьи     Практика.Ссылки     Устройства.Статьи     Устройства.Ссылки     FAQ     Форум     Словарик     Сайт.В начало